logo

oneAPI Data Analytics Library 2021.1 documentation

  • Data Analytics Pipeline
  • oneAPI Interfaces
    • Get Started with oneDAL
    • Build applications with oneDAL
    • Glossary
    • Computational Modes
    • Data Management
      • Array
      • Accessors
        • Column accessor
        • Row accessor
      • Data Sources
        • CSV data source
      • Tables
        • Homogeneous table
    • Algorithms
      • Clustering
        • K-Means
        • K-Means initialization
      • Decomposition
        • Principal Components Analysis (PCA)
      • Ensembles
        • Decision Forest Classification and Regression (DF)
      • Kernel Functions
        • Linear kernel
        • Radial Basis Function (RBF) kernel
      • Nearest Neighbors (kNN)
        • k-Nearest Neighbors Classification (k-NN)
      • Support Vector Machines
        • Support Vector Machine Classifier (SVM)
    • oneAPI Examples
      • DPC++
        • column_accessor_homogen.cpp
        • df_cls_dense_batch.cpp
        • df_reg_dense_batch.cpp
        • kmeans_init_dense.cpp
        • kmeans_lloyd_dense_batch.cpp
        • knn_cls_brute_force_dense_batch.cpp
        • linear_kernel_dense_batch.cpp
        • pca_cor_dense_batch.cpp
        • rbf_kernel_dense_batch.cpp
        • svm_two_class_thunder_dense_batch.cpp
      • C++
        • column_accessor_homogen.cpp
        • df_cls_dense_batch.cpp
        • df_reg_dense_batch.cpp
        • graph_service_functions.cpp
        • jaccard_batch.cpp
        • jaccard_batch_app.cpp
        • kmeans_init_dense.cpp
        • kmeans_lloyd_dense_batch.cpp
        • knn_cls_kd_tree_dense_batch.cpp
        • linear_kernel_dense_batch.cpp
        • load_graph.cpp
        • pca_dense_batch.cpp
        • rbf_kernel_dense_batch.cpp
        • svm_two_class_smo_dense_batch.cpp
        • svm_two_class_thunder_dense_batch.cpp
    • Appendix
      • k-d Tree
  • DAAL Interfaces
    • CPU and GPU Support
    • Library Usage
      • Algorithms
      • Computation Modes
      • Training and Prediction
        • Classification Usage Model
        • Regression Usage Model
        • Recommendation Systems Usage Model
    • Data Management
      • Numeric Tables
        • Generic Interfaces
        • Essential Interfaces for Algorithms
        • Types of Numeric Tables
      • Data Sources
      • Data Dictionaries
      • Data Serialization and Deserialization
      • Data Compression
      • Data Model
    • Analysis
      • K-Means Clustering
        • Batch Processing
        • Distributed Processing
        • Batch Processing
        • Distributed Processing
      • Density-Based Spatial Clustering of Applications with Noise
        • Batch Processing
        • Distributed Processing
      • Correlation and Variance-Covariance Matrices
        • Batch Processing
        • Online Processing
        • Distributed Processing
      • Principal Component Analysis
        • Batch Processing
        • Online Processing
        • Distributed Processing
      • Principal Components Analysis Transform
      • Singular Value Decomposition
        • Batch and Online Processing
        • Distributed Processing
      • Association Rules
      • Kernel Functions
      • Expectation-Maximization
      • Cholesky Decomposition
      • QR Decomposition
        • QR Decomposition without Pivoting
          • Batch and Online Processing
          • Distributed Processing
        • Pivoted QR Decomposition
      • Outlier Detection
        • Multivariate Outlier Detection
        • Multivariate BACON Outlier Detection
        • Univariate Outlier Detection
      • Distance Matrix
        • Correlation Distance Matrix
        • Cosine Distance Matrix
      • Distributions
        • Uniform Distribution
        • Normal Distribution
        • Bernoulli Distribution
      • Engines
        • mt19937
        • mcg59
        • mt2203
      • Moments of Low Order
        • Batch Processing
        • Online Processing
        • Distributed Processing
      • Quantile
      • Quality Metrics
        • Working with the Default Metric Set
          • Quality Metrics for Binary Classification Algorithms
          • Quality Metrics for Multi-class Classification Algorithms
          • Quality Metrics for Linear Regression
          • Quality Metrics for Principal Components Analysis
        • Working with User-defined Quality Metrics
      • Sorting
      • Normalization
        • Z-score
        • Min-max
      • Optimization Solvers
        • Objective Function
          • Computation
          • Sum of Functions
          • Mean Squared Error Algorithm
          • Objective Function with Precomputed Characteristics Algorithm
          • Logistic Loss
          • Cross-entropy Loss
        • Iterative Solver
          • Computation
          • Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm
          • Stochastic Gradient Descent Algorithm
          • Adaptive Subgradient Method
          • Coordinate Descent Algorithm
          • Stochastic Average Gradient Accelerated Method
    • Training and Prediction
      • Decision Forest
        • Decision Forest
        • Regression Decision Forest
        • Classification Decision Forest
      • Decision Trees
        • Decision Tree
        • Regression Decision Tree
        • Classification Decision Tree
      • Gradient Boosted Trees
        • Gradient Boosted Trees
        • Regression Gradient Boosted Trees
        • Classification Gradient Boosted Trees
      • Stump
        • Classification Stump
        • Regression Stump
      • Linear and Ridge Regressions
        • Linear Regression
        • Ridge Regression
        • Linear and Ridge Regressions Computation
      • LASSO and Elastic Net Regressions
        • LASSO
        • Elastic Net
        • LASSO and Elastic Net Computation
      • k-Nearest Neighbors (kNN) Classifier
      • Implicit Alternating Least Squares
        • Batch Processing
        • Distributed Processing
        • Batch Processing
        • Distributed Processing: Training
        • Distributed Processing: Prediction of Ratings
      • Logistic Regression
      • Naïve Bayes Classifier
        • Batch Processing
        • Online Processing
        • Distributed Processing
      • Support Vector Machine Classifier
      • Multi-class Classifier
      • Boosting
        • AdaBoost Classifier
        • AdaBoost Multiclass Classifier
        • BrownBoost Classifier
        • LogitBoost Classifier
    • Services
      • Extracting Version Information
      • Handling Errors
      • Managing Memory
      • Managing the Computational Environment
      • Providing a Callback for the Host Application
  • Bibliography
  • Notices and Disclaimers
Theme by the Executable Book Project
Contents
  • Developer Guide
  • Examples

DAAL Interfaces¶

This chapter documents algorithms implemented in DAAL interfaces. See oneAPI Interfaces to find documentation on oneAPI interfaces.

Developer Guide¶

  • CPU and GPU Support
    • Computation modes
    • Methods
    • Parameters
  • Library Usage
    • Algorithms
    • Computation Modes
    • Training and Prediction
  • Data Management
  • Analysis
    • K-Means Clustering
    • Density-Based Spatial Clustering of Applications with Noise
    • Correlation and Variance-Covariance Matrices
    • Principal Component Analysis
    • Principal Components Analysis Transform
    • Singular Value Decomposition
    • Association Rules
    • Kernel Functions
    • Expectation-Maximization
    • Cholesky Decomposition
    • QR Decomposition
    • Outlier Detection
    • Distance Matrix
    • Distributions
    • Engines
    • Moments of Low Order
    • Quantile
    • Quality Metrics
    • Sorting
    • Normalization
    • Optimization Solvers
  • Training and Prediction
    • Decision Forest
    • Decision Trees
    • Gradient Boosted Trees
    • Stump
    • Linear and Ridge Regressions
    • LASSO and Elastic Net Regressions
    • k-Nearest Neighbors (kNN) Classifier
    • Implicit Alternating Least Squares
    • Logistic Regression
    • Naïve Bayes Classifier
    • Support Vector Machine Classifier
    • Multi-class Classifier
    • Boosting
    • Training Alternative
  • Services
    • Extracting Version Information
    • Handling Errors
    • Managing Memory
    • Managing the Computational Environment
    • Providing a Callback for the Host Application

Examples¶

You can find examples on Github*:

  • C++ (CPU)

  • Java* (not supported on GPU)

  • Python*

k-d Tree CPU and GPU Support

By Intel
© Copyright 2014 - 2020, Intel Corporation.