Distributions¶
oneMKLRNG routines are used to generate random numbers with different types of distribution. Each function group is introduced below by the type of underlying distribution and contains a short description of its functionality, as well as specifications of the call sequence and the explanation of input and output parameters. Table “Continuous Distribution Generators” and Table “Discrete Distribution Generators” list the random number generator routines with data types and output distributions, and sets correspondence between data types of the generator routines and the basic random number generators.
Type of Distribution |
Data Types |
BRNG Data Type |
Description |
---|---|---|---|
s, d |
s, d |
Uniform continuous distribution on the interval [ |
|
s, d |
s, d |
Normal (Gaussian) distribution |
|
s, d |
s, d |
Normal (Gaussian) multivariate distribution |
|
s, d |
s, d |
Exponential distribution |
|
s, d |
s, d |
Laplace distribution (double exponential distribution) |
|
s, d |
s, d |
Weibull distribution |
|
s, d |
s, d |
Cauchy distribution |
|
s, d |
s, d |
Rayleigh distribution |
|
s, d |
s, d |
Lognormal distribution |
|
s, d |
s, d |
Gumbel (extreme value) distribution |
|
s, d |
s, d |
Gamma distribution |
|
s, d |
s, d |
Beta distribution |
|
s, d |
s, d |
Chi-Square distribution |
Type of Distribution |
Data Types |
BRNG Data Type |
Description |
---|---|---|---|
i |
d |
Uniform discrete distribution on the interval [ |
|
i |
i |
Uniformly distributed bits in 32-bit chunks |
|
i |
i |
Uniformly distributed bits in 64-bit chunks |
|
i |
i |
Bits of underlying BRNG integer recurrence |
|
i |
s |
Bernoulli distribution |
|
i |
s |
Geometric distribution |
|
i |
d |
Binomial distribution |
|
i |
d |
Hypergeometric distribution |
|
i |
s (for ) oneapi::mkl::rng::poisson_method::gaussian_icdf_based s (for distribution parameter λ≥ 27) and d (for λ < 27) (for oneapi::mkl::rng::poisson_method::ptpe) |
Poisson distribution |
|
i |
s |
Poisson distribution with varying mean |
|
i |
d |
Negative binomial distribution, or Pascal distribution |
|
i |
d |
Multinomial distribution |
Modes of random number generation
The library provides two modes of random number generation, accurate
and fast. Accurate generation mode is intended for the applications
that are highly demanding to accuracy of calculations. When used in
this mode, the generators produce random numbers lying completely
within definitional domain for all values of the distribution
parameters. For example, random numbers obtained from the generator
of continuous distribution that is uniform on interval
[a
,b
] belong to this interval irrespective of what a
and b
values may be. Fast mode provides high performance of
generation and also guarantees that generated random numbers belong
to the definitional domain except for some specific values of
distribution parameters. The generation mode is set by specifying
relevant value of the method parameter in generator routines. List of
distributions that support accurate mode of generation is given in
the table below.
Distribution |
Distribution Method |
---|---|
oneapi::mkl::rng::unform_method::standard_accurate |
|
oneapi::mkl::rng::exponential_method::icdf_accurate |
|
oneapi::mkl::rng::weibull_method::icdf_accurate |
|
oneapi::mkl::rng::rayleigh_method::icdf_accurate |
|
oneapi::mkl::rng::lognormal_method::icdf_accurate oneapi::mkl::rng::lognormal_method::box_muller2_accurate |
|
oneapi::mkl::rng::gamma_method::marsaglia_accurate |
|
oneapi::mkl::rng::beta_method::cja_accurate |
- Distributions Template Parameter Method
- oneapi::mkl::rng::uniform (Continuous)
- oneapi::mkl::rng::gaussian
- oneapi::mkl::rng::exponential
- oneapi::mkl::rng::laplace
- oneapi::mkl::rng::weibull
- oneapi::mkl::rng::cauchy
- oneapi::mkl::rng::rayleigh
- oneapi::oneapi::mkl::rng::lognormal
- oneapi::mkl::rng::gumbel
- oneapi::mkl::rng::gamma
- oneapi::mkl::rng::beta
- oneapi::mkl::rng::chi_square
- oneapi::mkl::rng::gaussian_mv
- oneapi::mkl::rng::uniform (Discrete)
- oneapi::mkl::rng::uniform_bits
- oneapi::mkl::rng::bits
- oneapi::mkl::rng::bernoulli
- oneapi::mkl::rng::geometric
- oneapi::mkl::rng::binomial
- oneapi::mkl::rng::hypergeometric
- oneapi::mkl::rng::poisson
- oneapi::mkl::rng::poisson_v
- oneapi::mkl::rng::negative_binomial
- oneapi::mkl::rng::multinomial